Human dorsal-root-ganglion perfusion measured in-vivo by MRI

نویسندگان

  • Tim Godel
  • Mirko Pham
  • Sabine Heiland
  • Martin Bendszus
  • Philipp Bäumer
چکیده

PURPOSE To develop an in-vivo imaging method for the measurement of dorsal-root-ganglia-(DRG) perfusion, to establish its normal values in patients without known peripheral nerve disorders or radicular pain syndromes and to determine the physiological spatial perfusion pattern within the DRG. METHODS This prospective study was approved by the institutional ethics committee and written informed consent was obtained from all participants. 46 (24 female, 22 male, mean age 46.0±15.2years) subjects without known peripheral neuropathies or pain syndromes were examined by a 3Tesla MRI scanner (Magnetom VERIO or TRIO, Siemens AG, Erlangen, Germany) with a VIBE (Volume-Interpolated-Breathhold-Examination) dynamic-contrast-enhanced (DCE) T1-w-sequence (TR/TE 3.3/1.11ms; 24 slices; voxel resolution 1.3×1.3×3.0mm(3)) covered the pelvis from the upper plate of the 5th lumbar vertebra to the 2nd sacral vertebra. Transfer-constant (K(trans)) and interstitial-volume-fraction (interstitial-leakage-fraction, Ve) were modeled for the DRG and spinal nerve by applying the Tofts-model. Statistical analyses included pairwise comparisons of L5/S1 DRG vs. spinal nerve. Furthermore, distinct physiological zones within the S1 DRG were compared (cell body rich area (CBRA) vs. nerve fiber rich area (NFRA)). RESULTS DRG showed a significantly increased permeability compared to spinal nerve (K(trans) 3.8±1.5 10(-3)/min vs. 1.6±0.9 10(-3)/min, p-value: <0.001) combined with an increased interstitial leakage of contrast agent into the extravascular-extracellular-space (Ve 38.1±19.2% vs. 17.3±9.9%, p-value: <0.001). Parameters showed no statistically significant difference on DRG-level (L5 vs. S1; p-value: 0.62 (K(trans)); 0.17 (Ve)) and -side (left vs. right; p-value: 0.25 (K(trans)); 0.79 (Ve)). Female gender was associated with a significantly increased permeability (K(trans) female 4.3±1.4 10(-3)/min vs. male 3.4±0.9 10(-3)/min, p-value: <0.05) but no statistically significant differences in interstitial leakage (Ve female 40.1±14,1% vs. male 34.5±17.4%, p-value: 0.24). DRG showed distinct spatial distribution patterns of perfusion: K(trans) and Ve were significantly higher in the CBRA than in the NFRA (K(trans) 4.4±1.8 10(-3)/min vs. 1.7±1.2 10(-3)/min, p-value: <0.001 and Ve 40.9±21.3% vs. 15.1±11.7%, p-value: <0.001). CONCLUSION Non-invasive and in-vivo measurement of human DRG perfusion by MRI is a feasible technique. DRG show substantially higher permeability and interstitial leakage than spinal nerves. Even distinct physiological perfusion patterns for different microstructural compartments could be observed within the DRG. The technique may become particularly useful for future research on the poorly understood human sensory neuropathies and pain syndromes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study

  Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons.

We examined the efficacy of herpes simplex virus vector-mediated gene transfer of erythropoietin in preventing neuropathy in mouse model of streptozotocin-diabetes. A replication-incompetent herpes simplex virus vector with erythropoietin under the control of the human cytomegalovirus promoter (vector DHEPO) was constructed. DHEPO expressed and released erythropoietin from primary dorsal root g...

متن کامل

Collagen as Adherent Substratum and Inducer of Dorsal Root Ganglia Outgrowth

Neurite outgrowth from dorsal root ganglion (DRG) explants is a method of evaluating neurotrophic activity of growth factors. When complete medium containing collagen was supplemented with nerve growth factor (NGF) DRG outgrowth was observed after 18 h. In the absence of NGF and in the presence of collagen, the DRG outgrowth took place after 72 h. In wells not supplemented with collagen gel in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2016